Математика Тригонометрические и гиперболические подстановки примеры

Интегрирование рациональных выражений тригонометрических функций Интегрирование любого рационального выражения тригонометрических функций можно всегда свести к интегрированию алгебраической рациональной функции используя универсальную тригонометрическую подстановку x = 2arctg t (или ).

Вычислить интеграл

Вычислить интеграл

Вычислить интеграл

Найти интеграл

Аналитическая геометрия Координаты векторов относительно базиса. Типовые расчеты (курсовые задания) по математике

В данной секции мы рассмотрим вычисление интегралов вида , где R - рациональная функция x и квадратного корня . Предварительно преобразуем квадратичную функцию под знаком корня, выделив в ней полный квадрат:

Вычислить интеграл .

Вычислить интеграл .

Вычислить интеграл .

Найти интеграл .

Найти интеграл .

Интегрирование рациональных функций

Для интегрирования рациональной функции , где P(x) и Q(x) - полиномы, используется следующая последовательность шагов:

  1. Если дробь неправильная (т.е. степень P(x) больше степени Q(x)), преобразовать ее в правильную, выделив целое выражение;
  2. Разложить знаменатель Q(x) на произведение одночленов и/или несократимых квадратичных выражений;
  3. Разложить рациональную дробь на простейшие дроби, используя метод неопределенных коэффициентов;
  4. Вычислить интегралы от простейших дробей.

Вычислить интеграл . . . .

В данном разделе мы рассмотрим 8 специальных классов интегралов от тригонометрических функций. Для каждого класса применяются определенные преобразования и подстановки, позволяющие получить аналитическое решение.

Интегрирование некоторых классов тригонометрических функций

Найти интеграл . . .

Повторные интегралы Области интегрирования I и II типа Двойные интегралы вычисляются, как правило, с помощью повторных интегралов. Однако переход от двойных к повторным интегралам возможен не для произвольной области интегрирования R, а для областей определенного типа.

Найти повторный интеграл . Вычислить .

Изменить порядок интегрирования в повторном интеграле .

Криволинейные интегралы первого рода

Найти интеграл вдоль отрезка прямой y = x от начала координат до точки (2,2)

Вычислить интеграл , где C − кривая, заданная уравнением .

Вычислить интеграл , где кривая C задана параметрически в виде .

Найти криволинейный интеграл , где кривая C является дугой эллипса , лежащей в первом

Криволинейные интегралы второго рода

Вычислить интеграл , где кривая C задана параметрически в виде .

Вычислить вдоль кривой от точки O (0,0) до A (1,1)

Вычислить криволинейный интеграл вдоль кривой в интервале

Вычислить криволинейный интеграл , где C − дуга эллипса (рисунок 6), заданного параметрически в виде .

Теорема Остроградского-Гаусса

Применяя теорему Остроградского-Гаусса, вычислить поверхностный интеграл от векторного поля , где S − поверхность тела, образованного цилиндром и плоскостями z = −1, z = 1

Используя формулу Остроградского-Гаусса, оценить поверхностный интеграл от векторного поля , где S − поверхность тела, ограниченного и плоскостью z = 1.

Вычислить поверхностный интеграл от векторного поля , где S − поверхность параллелепипеда, образованного плоскостями x = 0, x = 1, y = 0, y = 2, z = 0, z = 3

Независимость криволинейных интегралов от пути интегрирования

Вычислить криволинейный интеграл для двух путей интегрирования: 1) AB − отрезок прямой от точки A (0,0) до точки B (1,1); 2) AB − участок параболы от A (0,0) до B (1,1).

Показать, что криволинейный интеграл , где точки A, B имеют координаты A (1,2), B (4,5), не зависит от пути интегрирования, и найти значение этого интеграла.

Определить, является ли векторное поле потенциальным?

Определить, является ли потенциальным векторное поле ?

Физические приложения двойных интегралов

Определить координаты центра тяжести однородной пластины, образованной параболами и .

Вычислить моменты инерции треугольника, ограниченного прямыми и имеющего плотность .

Физические приложения криволинейных интегралов

С помощью криволинейных интегралов вычисляются

  • Масса кривой;
  • Центр масс и моменты инерции кривой;
  • Работа при перемещении тела в силовом поле;
  • Магнитное поле вокруг проводника с током (Закон Ампера);
  • Электромагнитная индукция в замкнутом контуре при изменении магнитного потока (Закон Фарадея).

Работа поля

Определить массу проволоки, имеющей форму отрезка от точки A(1,1) до B(2,4). Масса распределена вдоль отрезка с плотностью .

Определить массу проволоки, имеющей форму дуги окружности от точки A(1,0) до B(0,1) с плотностью

Найти центр масс проволоки, имеющей форму кардиоиды

Вычислить момент инерции Ix проволоки в форме окружности x2 + y2 = a2 с плотностью ρ = 1.

Тело массой m брошено под углом к горизонту α с начальной скоростью v0. Вычислить работу силы притяжения за время движения тела до момента соударения с землей.

Вычислить индукцию магнитного поля в вакууме на расстоянии r от оси бесконечно длинного проводника с током I.

изготовление дизайна лэндинг пэйдж недорого вот
Программирование на языке ассемблера