Тригонометрические и гиперболические подстановки

Математика примеры решения задач типового расчета

Теорема Остроградского-Гаусса

Пример Вычислить поверхностный интеграл от векторного поля , где S − поверхность параллелепипеда, образованного плоскостями x = 0, x = 1, y = 0, y = 2, z = 0, z = 3 (рисунок 4).

Решение. Воспользуемся теоремой Остроградского-Гаусса:

Пример Найти интеграл , где S − внешняя поверхность пирамиды (рисунок 5).

Решение.
Рис.5
Рис.6
Применяя формулу Остроградского-Гаусса можно записать искомый поверхностный интеграл в виде Вычислим тройной интеграл. Область интегрирования в плоскости xy показана на рисунке 6. Полагая z = 0, получаем Следовательно, область D можно представить в виде множества Решая неравенство относительно переменной z, получаем Тогда интеграл равен
Математика интегралы и производная. Задачи примеры
Ориентация поверхности. Поток векторного поля. Поверхностный интеграл второго рода, его свойства, физический смысл и вычисление. Связь поверхностных интегралов первого и второго рода. Определим понятие стороны поверхности