секс с русскими
Тригонометрические и гиперболические подстановки секс с русскими

Математика примеры решения задач типового расчета

Физические приложения криволинейных интегралов

Работа поля

Работа при перемещении тела в силовом поле вдоль кривой C выражается через криволинейный интеграл второго рода где − сила, действующая на тело, − единичный касательный вектор (рисунок 1). Обозначение означает скалярное произведение векторов и . Заметим, что силовое поле не обязательно является причиной движения тела. Тело может двигаться под действием другой силы. В таком случае работа силы иногда может оказаться отрицательной. Если векторное поля задано в координатной форме в виде то работа поля вычисляется по формуле В частном случае, когда тело двигается вдоль плоской кривой C в плоскости Oxy, справедлива формула где . Если траектория движения C определена через параметр t (t часто означает время), то формула для вычисления работы принимает вид где t изменяется в интервале от α до β. Если векторное поле потенциально, то работа по перемещению тела из точки A в точку B выражается формулой где − потенциал поля. Градиент скалярного поля

Рис.1
Рис.2
Математика интегралы и производная. Задачи примеры
В лекции рассматриваются физические приложения определённого интеграла: работа переменной силы, масса и центр тяжести неоднородного стержня. Рассматриваются формулы трапеций и парабол для приближённого вычисления определённых интегралов.