Схемотехника Пробники и индикаторы напряжения


Для индикации состояния элементов устройств, выполненных на цифровых микросхемах, используют так называемые логические пробники.
К логическим пробникам обычно предъявляют следующие требования: индикация логической единицы/нуля на входе/выходе цифровой интегральной микросхемы, реже — наличие импульсов на электродах полупроводникового прибора. Пробник не должен перегружать выходные цепи контролируемых микросхем или шунтировать входные (т.е. не должен вносить сбоев в работу цифровой техники в процессе контроля). Обычно подобные пробники узкоспециализированы для работы только с ТТЛ- или КЖЗГ7-логикой.
На рисунке 2.6 приведена схема универсального пробника [2.4], позволяющего без использования источника питания контролировать работу ТТЛ (3...5 Б) и КМОП (3...15 6) микросхем, а
также индицировать напряжение постоянного и переменного тока в диапазоне от 3 до 100 Б при длительном подключении и до 300 В — при кратковременном. Пробник питается непосредственно от источника контролируемого напряжения, потребляя при этом весьма незначительный ток: при напряжении 5 В — 90 мкА; при 9 Б —до 190/WK/4; при 15 В—- до 290мк/4; при 1006 — 4 мА и при 300 Б — 12 мА. Высокая экономичность устройства и, соответственно, малая нагрузка по току на контролируемую цепь достигнута за счет динамического характера индикации устройства. Электронно-дырочный переход Лабораторные работы по оптоэлектронике
Индикация напряжений малого уровня (до 14 6) осуществляется преимущественно за счет работы генератора импульсов на германиевых транзисторах VT1, VT2, в качестве которых могут быть использованы транзисторы типов МП39 — МП42 и /И/735 — МП38.
При индикации ТТ/7-уровней частота вспышек светодио-да HL3 составляет около 3 Гц; при напряжении 4 6 (близком к уровню минимально допустимых значений логической единицы ТТЛ-логики) частота генерации повышается до 5 Гц. При напряжении 3 6 частота генерации возрастает до 10 Гц и выше, яркость свечения светодиода резко снижается. При контроле КМОП-эпе-ментов напряжению в 9 6 соответствует частота генерации около 1 Гц; начиная с напряжений, превышающих значение напряжения стабилизации стабилитрона и напряжение зажигания светодиода, начинает светиться светодиод HL2. Для указанных на рисунке элементов схемы (Д814Б и АЛ307) это напряжение составляет 11,56. Падение напряжения собственно на генераторе импульсов не превышает 10 6. В диапазоне напряжений 14...20 Б светодиод HL2 мигает с частотой около 1 Гц с постепенным переходом в режим непрерывного свечения.
При наличии на входе устройства импульсных сигналов частота (яркость) вспышек светодиодов также изменяется, что позволяет контролировать и динамические процессы в цифровых и аналоговых устройствах.
Пробник может быть выполнен в виде щупа, например, в корпусе авторучки. Генератор устройства защищен от неправильного подключения шунтирующей его цепочкой — VD1 и HL1, причем светодиод HL1 одновременно индицирует своим свечением неправильную полярность подключения.
Устройство контроля напряжения питания (рис. 2.7) работает по пороговому принципу [2.5 — 2.7]. Фактически оно состоит из мостовой схемы и ключевого элемента на аналоге прибора с отрицательным динамическим сопротивлением. В случае, когда напряжение питания снизится ниже определенного порога (2,1 S), происходит переключение ключевого элемента, индикатор — све-тодиод — загорается. При нормальном уровне напряжения устройство потребляет ток около 1 мА.


Рис. 2.7. Схема порогового устройства контроля напряжения пита
ния

Во второй половине пятидесятых годов в развитии транзисторов произошел решающий качественный скачок: вместо германия стали использовать другой полупроводник - кремний. В итоге рабочая температура транзисторов выросла до 120-150°С, при этом их характеристики сохраняли высокую стабильность, а срок службы приборов стал практически бесконечным. Но, пожалуй, главное заключалось в том, что в 1959 году американской фирмой "Firechild" применительно к кремнию была разработана так называемая планарная технология.

Офисный пакет Word, Access, Excel практика использования